On the universal optimality of the 600-cell: the Levenshtein framework lifted (jointly with Boyvalenkov, Hardin, Saff, Stoyanova)

Peter Dragnev, Purdue University Fort Wayne
The potential energy of a spherical code $\$ C \backslash$ subset \backslash mathbb $\{S\}^{\wedge}\{n-1\} \$$ with interaction potential \$h\$ is defined as $\$ E(C, n, h):=\backslash$ sum_ $\{x \backslash$ not $=y \backslash i n C\} h(\backslash$ langle $x, y \backslash$ rangle $) \$$. In 2016 the authors derived a universal lower bound on energy for absolutely monotone potentials \$E(C,n,h) \geq $\mathrm{N}^{\wedge} 2 \backslash$ sum_\{i=1\}^m \rho_i h(\backslash alpha_i) $\$$, where the nodes $\$ \backslash\{\backslash$ alpha_i $\backslash\} \$$ and weights $\$ \backslash\{\backslash$ rho_i $\backslash\} \$$ depend only on the cardinality $\$ N \$$ of $\$ \mathrm{C} \$$ and dimension $\$ \mathrm{n} \$$ and are obtained from a quadrature rule framework studied by Levenshtein in relation to maximal codes. The lower bound is attained for all universally optimal codes discovered by Cohn and Kumar, but the $\$ 600 \$$-cell (a code with $\$ 120 \$$ points on $\$ \backslash$ mathbb $\{S\}^{\wedge} 3 \$$).

In this talk we present a method for lifting the Levenshtein framework (increase \$m\$). As a consequence we obtain a solution of the LP problem associated with the $\$ 600 \$$-cell and obtain a characterization of the optimal polynomials of degree at most $\$ 17 \$$ as a linear combination of three extremal polynomials, one of which is the one introduced by Cohn-Kumar in their proof.

